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Social optimum in the Basic Climate Economy (BCE) model

The Basic Climate Economy (BCE) model is a useful tool which is able to deal with climate economics and
climate policy, incorporating non-renewable (fossil) stock depletion, pollution stock accumulation, endogenous
growth and climate-induced capital depreciation. Specifically, the BCE model adds stock pollution to a
two-sector capital-resource model; we have the manufacturing sector which produces goods immediately
available to consumption, and the corporate sector that provides goods and services for investments which
increase the physical capital stock.

Here we can make the following modeling assumptions: constant returns to capital in capital sector,
natural resource use for final goods, emissions (caused by resource use) add to pollution stock, and capital
depreciation is increased by pollution stock.

.1 Assumptions

For the production, the final output Yt is produced by capital Kt and natural resources Rt according to the
Cobb-Douglas form:

Yt = A (✏tKt)
↵
R

1�↵
t (1)

where ✏t ⌘
KYt
Kt

2 [0, 1] is the aggregate fraction of capital devoted to the consumption good.

For the resources, let R be a natural resource which is extracted from resource stock S and regenerated by
nature at a rate � . We have the following motion equation:

Ṡt = �St �Rt (2)

Here we assume the resource R to be exhaustible, � = 0. Hence,

Ṡt = �Rt s.t.

Z 1

0

Rtdt  S0 (3)

For the capital, capital Kt is assumed to be the only input, so that investment good It can be written as:

It = B (1� ✏t)Kt with B > 0 (4)

Investment leads to capital accumulation according to

K̇t = It �Dt (Pt)Kt = = B (1� ✏t)Kt �Dt (Pt)Kt (5)

where Dt (Pt) is the damage function. Given an endogenous rate of capital depreciation, Dt (Pt) 2 [0, 1]
denotes the share of capital loss.

For the pollution, pollution stock P increases with the use of natural resources and could decay at a rate �:

Ṗt = �Rt � �Pt with � > 0,� 2 [0, 1] (6)

where � represents the carbon intensity of the polluting resource. Here we assume no decay of pollution stock,
i.e. � = 0. Hence,

Ṗt = �Rt = ��Ṡt (7)

Moreover, we assume there is no emission mitigation technology available. Finally, we can suppose that
the stock of exhaustible resources and the state of the atmosphere influence individual utility, together with
(negatively) a↵ecting the production and the capital stock.
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.2 Social optimum

Given all the assumptions above, the social planner chooses the share ✏t, and resource extraction Rt in order
to maximize the utility function, which will have Equations 1,4,5,3 as constraints. The utility function U (Ct)
is given by a CRRA-type function:

max
Ct,�t

Z 1

0

U (Ct) e
�⇢t

dt = max
Ct,�t

Z 1

0

C
1��
t � 1

1� �
e
�⇢t

dt (8)

with with � > 0, the inverse of the elasticity of intertemporal substitution.

We assume to have an equilibrium condition on consumer goods market, which ensures Yt = Ct and
the no-arbitrage condition on the prices pY = pC (and on the shadow prices �Ct = �Yt). Hence,

Ct = Yt = A (✏tKt)
↵
R

1�↵
t (9)

In order to optimize the problem, we need to write the expression for the current-value Hamiltonian Ht,
taking into account the CRRA utility function and all the constraints.

Ht =
C

1��
t � 1

1� �
+ �Ct

⇥
A (✏tKt)

↵
R

1�↵
t � Ct

⇤
+ �KtKt [B (1� ✏t)�D (Pt)]� �StRt + �Pt�Rt (10)

where �Ct ,�Kt ,�St , �Ct , �Pt are the shadow prices of the consumption good, Ct, capital stock, Kt, stock of
non-renewable resources, St, and stock of pollution, �Pt . Assuming an internal solution, we are able to write

the first order conditions
⇣

@Ht
@(·) = 0

⌘
with reference to Ct, ✏t and Rt:

@Ht

@Ct
= 0 ) 1� �

1� �
C

�� � �Ct = 0; C
��
t � �Ct = 0 (11)

@Ht

@✏t
= 0 ) �Ct↵AK

↵
t R

1�↵
t ✏

↵�1

t � �KtBKt = 0 (12)

@Ht

@Rt
= 0 ) �Ct (1� ↵)A (✏tKt)

↵
R

�↵
t � �St + �Pt� = 0 (13)

Rearranging Equations 11,12,13, we obtain:

C
��
t = �Ct (14)

�Ct↵A(✏tKt)
↵
R

1�↵
t = �KtBKt✏t

Eqn.9����! �Ct↵Ct = �KtBKt✏t ! ↵
Ct

Kt
=
�Kt

�Ct

B✏t (15)

�Ct (1� ↵)A (✏tKt)
↵
R

�↵
t

Rt

Rt
= �St � �Pt�

Eqn.9����! �Ct (1� ↵)Ct
1

Rt
= �St � �Pt�

continues������! (16)

continues������! (1� ↵)
Ct

Rt
=
�St

�Ct

� �Pt

�Ct

�; (1� ↵)
Ct

Rt
=

1

�Ct

(�St � ��Pt) (17)

Moreover, we know that @Ht
@(⇤) = ⇢�⇤t � �̇⇤t for every state variable, here Kt, St and Pt, with its shadow price

�⇤t . Therefore, we can write:

@Ht

@Kt
= ⇢�Kt � �̇Kt ) �Ct↵A✏

↵
K

↵�1

t R
1�↵
t + �Kt [B (1� ✏t)�D (Pt)] = ⇢�Kt � �̇Kt (18)

@Ht

@St
= ⇢�St � �̇St ) 0 = ⇢�St � �̇St (19)

@Ht

@Pt
= ⇢�Pt � �̇Pt ) ��KtKtḊ(Pt) = ⇢�Pt � �̇Pt (20)
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Rewriting Equations 18 we obtain:

�Ct↵A✏
↵
K

↵
t R

1�↵
t

1

Kt
+ �Kt [B (1� ✏t)�D (Pt)]

Kt

Kt
= ⇢�Kt � �̇Kt (21)

Equations 5 and 9������������! �Ct↵Ct
1

Kt
+ �Kt

K̇t

Kt
= ⇢�Kt � �̇Kt (22)

Dividing by �Kt�����������! ↵
�CtCt

�KtKt
+

K̇t

Kt
= ⇢� �̇Kt

�Kt

(23)

Rearranging��������! �̇Kt

�Kt

+
K̇t

Kt
= �↵ �CtCt

�KtKt
+ ⇢;

�̇KtKt + K̇t�Kt

�KtKt
= �↵ �CtCt

�KtKt
+ ⇢ (24)

We identify the growth rates �̇
�=�̂

������������������������! ��KtKt = �↵ �CtCt

�KtKt
+ ⇢ (25)

Rewriting Equations 19 we obtain:
�̂St = ⇢ (26)

Rewriting Equations 20 we obtain:
�̇Pt = �KtKtḊ(Pt) + ⇢�Pt (27)

Dividing by �Pt�����������! �̂Pt = Ḋ(Pt)Kt
�Kt

�Pt

+ ⇢ (28)

The optimization must also include appropriate transversality conditions:

lim
t!1

�StSte
�⇢t = 0 (29)

lim
t!1

�KtKte
�⇢t = 0 (30)

lim
t!1

�PtPte
�⇢t = 0 (31)

We can notice in Equation 26 the Hotelling rule for the extraction of the non-renewable resource.

Moreover, Equation 15 suggests that it is indi↵erent allocating capital between the two activities of the BCE
model: producing the investment good and the consumption good. If we had � = 1 (i.e logarithmic utility),
we would have from Equation 14:

�CtCt = 1
Eqn.15����! �KtKt =

↵

B✏t

Eqn.25����! d (�KtKt)

�KtKt
= �B✏+ ⇢; ✏̇t = B✏t

2 � ⇢✏t (32)

Solving the differential equation�����������������������! ✏t =
⇢C1e

�⇢t

BC1e
�⇢t +B⇢C2

(33)

Using the transversality condition (30):

lim
t!1

↵

B✏t
e
�⇢t = 0

Eqn.33����! lim
t!1

↵

⇢C1

�
C1e

�⇢t + ⇢C2

�
= 0 ) C2 = 0 (34)

Therefore we derive that:
✏ =

⇢

B
⌘ ✏ (35)

Equation 35 indicates that the share of capital used in the final goods sector instantaneously jumps to its
steady-state value.
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In order to find the Keynes-Ramsey rule (KRR) for the optimal growth rate of consumption Ĉt, we
consider Equation 9:

Ct = A (✏tKt)
↵
R

1�↵
t

Natural logarithm������������! lnCt = lnA+ ↵ ln ✏t + ↵ lnKt + (1� ↵) lnRt (36)

Taking the derivative����������������������!
Recalling the growth rates �̇

�=�̂
Ĉt = ↵✏̂t + ↵K̂t + (1� ↵) R̂t (37)

Recalling Equation 5:

K̇t = B (1� ✏t)Kt �Dt (Pt)Kt
Dividing by Kt����������! K̂t = B (1� ✏t)�Dt (Pt) (38)

Recalling Equation 14:

C
��
t = �Ct

Natural logarithm������������! �� lnCt = ln�Ct

Derivative�������! �̂Ct = ��Ĉt (39)

From Equation 15:

(1� ↵)
Ct

Rt
=

1

�Ct

(�St � �Pt)�
Nat. log.������! ln (1� ↵)+lnCt�lnRt = � ln�Ct+ln (�St � �Pt)+ln� (40)

Deriv.����! Ĉt�R̂t = ��̂Ct+
�̇St � �̇Pt

�St � �Pt

; R̂t = Ĉt+�̂Ct�
�̇St

�St

�

��
1� �̇Pt

�̇St

1� �Pt
�St

�

�� ; R̂t = Ĉt+�̂Ct��̇St

�

��
1� �̇Pt

�̇St

1� �Pt
�St

�

�� (41)

Equations 26 and 38��������������! R̂t = Ĉt � �Ĉt � ⇢

�

��
1� �̇Pt

�̇St

1� �Pt
�St

�

�� ; R̂t = (1� �) Ĉt � ⇢

�

��
1� �̇Pt

�̇St

1� �Pt
�St

�

�� (42)

From Equation 17:

↵
Ct

Kt
=
�Kt

�Ct

B✏t
Nat. log.������! ln (↵) + lnCt � lnKt = ln�Kt � ln�Ct + lnB + ln ✏t (43)

Deriv.����! Ĉt � K̂t = �̂Kt � �̂Ct + ✏̂t
Rearranging��������������!

Equations 38 and 39

✏̂t = Ĉt � (B (1� ✏t)�Dt (Pt))� �̂Kt � �Ĉt (44)

From Equation 25:

�̂Kt+K̂t = �↵ �CtCt

�KtKt
+⇢

Eq 15����! �̂Kt+K̂t = �B✏t+⇢;
Eq 38����! �̂Kt = �B✏t+⇢�(B (1� ✏t)�Dt (Pt)) (45)

Substituting Equation 45 into Equation 44:

✏̂t = Ĉt � (B (1� ✏t)�Dt (Pt))� (�B✏t + ⇢� (B (1� ✏t)�Dt (Pt)))� �Ĉt (46)

✏̂t = B✏t + (1� �) Ĉt � ⇢ (47)

Finally, we can substitute Equation 38, 42, 47 into Equation 37:

Ĉt = ↵

h
B✏t + (1� �) Ĉt � ⇢

i
+ ↵ [B (1� ✏t)�Dt (Pt)] + (1� ↵)

2

64(1� �) Ĉt � ⇢

�

��
1� �̇Pt

�̇St

1� �Pt
�St

�

��

3

75 (48)

Ĉt = ↵B✏t+↵ (1� �) Ĉt�↵⇢+↵B�↵B✏t�↵Dt (Pt)+(1� �) Ĉt�↵ (1� �) Ĉt�(1� ↵) ⇢

�

��
1� �̇Pt

�̇St

1� �Pt
�St

�

�� (49)
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�Ĉt = �↵⇢+ ↵B � ↵Dt (Pt)� (1� ↵) ⇢

�

��
1� �̇Pt

�̇St

1� �Pt
�St

�

�� (50)

Ĉt =
1

�

2

64↵B � ↵Dt (Pt)� ↵⇢� ⇢

�

��↵+ ↵

�

��
1� �̇Pt

�̇St

1� �Pt
�St

�

��+

�

��
1� �̇Pt

�̇St

1� �Pt
�St

�

��

�

��

3

75 (51)

We can notice that Equation 51 is the Keynes-Ramsey rule for the optimal growth rate of consumption.

In particular, if we can assume that the stock of exhaustible resources and the state of the atmosphere do
not primarily a↵ect individual utility, we will have the shadow price for the stock of pollution equal to zero:

�Pt = 0 therefore �̇Pt = 0 (52)

and the Keynes-Ramsey rule as written in Equation 51 is reduced to

Ĉt =
↵B

�
� ↵D (Pt)

�
� ⇢

�
(53)

Equation 53 coincide with the KRR obtained with the decentralized equilibrium in the BCE model paper
[Bretschger, L., Karydas, C.,(2018)]. We can notice in Equation 53 the di↵erent aspects of productivity,
depreciation, and discounting on the growth rate of consumption in time.

In particular, for any given damage function D (Pt), the dynamic system expressed by Equations 47 and 53,
along with the resource and climate dynamics (3), (7), and the transversality conditions (29), (30), (31), are
su�cient to completely characterize the social optimum model.

The steady-state values that we can immediately derive from the above results are:

S1
Exhaustible

= 0 (54)

P1 = Pmax = P0 + �S0 (55)

Ĉ1 =
↵B

�
� ↵D (P1)

�
� ⇢

�
(56)

For the final steady-state condition, we recall the transversality condition 30:

lim
t!1

�KtKte
�⇢t = 0 (57)

The above expression implies that
��KtKt � ⇢ < 0 (58)

Moreover, we know from Equation 45 that:

��KtKt = �B✏t + ⇢ (59)

We combine the above conditions 58, 59 to get that:

lim
t!1

✏t > 0 (60)

As we know from Equation 5 that K̂t is asymptotically constant for t ! 1, we have that limt!1 ✏̂t  0.
However, we know from (60) that ✏̂t is strictly positive; hence it must be

lim
t!1

✏̂t = 0 (61)

7



364-0576-00L, FS20

The final steady-state condition can be directly obtained from Equation 47:

✏1 =
1

B

h
(1� �) Ĉt � ⇢

i
(62)

As a final part of our model solution for the social optimum, we will try to derive the social cost of carbon
(SCC). The SCC basically reflects total damages from releasing greenhouse gas emissions to the atmosphere
at every point in time. Labeling the SCC as �t, that is the marginal externality damage from burning an
additional unit of polluting non-renewable resource, we can define it as:

�t = ���Pt

�Ct

(63)

Let (⌫ � t) the time interval between a generic period of emission ⌫ and the reference period of emission t.
We suppose the pollution stock increases over time. Since we took ⌫ such that ⌫ > t, we have

P� � Pt for all ⌫ � t (64)

It is then possible to rewrite the transversality condition for the stock pollution (31):

0 = lim
�!1

�P�P�e
�⇢� � lim

�!1
�P�Pte

�⇢� (65)

which implies
lim
�!1

�P�e
�⇢(��t) = 0 for all ⌫ � t (66)

We recall Equation 28 in terms of ⌫:

�̂P� = Ḋ(P�)K�
�K�

�P�

+⇢
Multiplying both sides with�������������������!

e��(��t)
�̂P�e

�⇢(��t) = Ḋ(P�)K�
�K�

�P�

e
�⇢(��t)+⇢e�⇢(��t); (67)

Multiplying both sides with �P�����������������������! �̇P�e
�⇢(��t) � ⇢�P�e

�⇢(��t) = Ḋ (P�)�K�K�e
�⇢(��t); (68)

d
�
�P�e

�⇢(��t)
�

d⌫
= Ḋ (P�)�K�K�e

�⇢(��t); (69)

Using the transversality implication (66), we can calculate the indefinite integral from ⌫ = t to ⌫ ! 1 as

��Pt =

Z 1

t
Ḋ (P�)�K�K�e

�⇢(��t)
d⌫ (70)

Substituting ��Pt from (70) into (63) we get that

�t = ���Pt

�Ct

=
�

�Ct

Z 1

t
Ḋ (P�)�K�K�e

�⇢(��t)
d⌫ (71)

Substituting �Ct from (14) and (�K�K�) from (15) we get that

�t =
�

C
��
t

Z 1

t
Ḋ (P�)

↵C��C�

B✏�
e
�⇢(��t)

d⌫ (72)

We multiply and divide the right-hand side of Equation 72 with Ct and ⇢:

�t = Ct
↵�

⇢

Z 1

t
Ḋ (P�)

✓
⇢

B✏�

◆
(C��C� )

C
1��
t

e
�⇢(��t)

d⌫ (73)

We substitute
⇢

B
and �C� according to Equations 35 and 14, respectively.

SCC = �t = Ct
↵�

⇢

Z 1

t
Ḋ (P�)

✓
✏

✏�

◆✓
Ct

C�

◆��1

e
�⇢(��t)

d⌫ (74)

We can notice that Equation 74 is the Social Cost of Carbon (SCC) for the BCE model we are studying.

The first term inside the integral is the marginal damage of pollution on capital accumulation,i.e. Ḋ(Pt),
the second term comes from shadow prices of capital and is responsible for allocating capital between
the consumption and the investment sector, while the third term reflects preferences of agents regarding
intertemporal consumption.
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.3 Comparison with the decentralized case and the role of policy

In Section 2 we characterized the socially optimal solution and derived the general expression for the social
cost of carbon, �t (see Equation 74).
Here we compare the results obtained in the model above with those for the decentralized equilibrium
case. For the decentralized case, we make reference to the work done by Bretschger L. and Karydas C. in
”Economics of climate change: Introducing the Basic Climate Economic (BCE) model” [2018].

After a careful look at the two models we can notice that, if expressed per units of output, the social
cost of carbon (SCC) for the social planner case equals the Pigouvian carbon tax, i.e. the tax needed to
optimally correct for the environmental pollution externality in the decentralized equilibrium case.
Indeed, under general conditions, we have that:

�SCC = �̃t ⌘
�t

Yt
= Social cost of carbon per unit of output (75)

Substituting �t according to Equation 74:

�̃t ⌘ � ��Pt

�CtYt

Yt=CT����!
Eqn.9

�̃t =
↵�

⇢

Z 1

t
Ḋ (P�)

✓
✏

✏�

◆✓
Ct

C�

◆��1

e
�⇢(��t)

d⌫ (76)

and if we assume � = 1, i.e. logarithmic utility function, we have from (32) that

�CtCt = 1 ) �̃t ⌘ ���Pt which implies ���t ⌘ ���̂Pt (77)

It can be shown that in the decentralized case, given � = 1, the capital share ✏t immediately jumps to its
optimal steady state value ✏ ⌘ ⇢/B. This is the same result that we obtained with the social planner in
Equation 35. We can compare the social planner’s optimality condition in Equation 17 with its equivalent
from the market case1:

Social Planner Decentralized Equilibrium

(1� ↵) Ct
Rt

=
�St
�Ct

� �
�Pt
�Ct

(1� ↵) Yt
Rt

= pRt + �t

Assuming the equilibrium condition on consumer goods market, i.e. Ct = Yt, it is immediate to notice that
the resource extraction will follow its optimal path ONLY if the producer’s price for the non-renewable
resource pRt equals its scarcity rent (pRt = �St/�Ct), and if the carbon tax �t per-unit in the decentralized

case equals the marginal externality damage of emissions �� �Pt
�Ct

in the social planner case.

Recalling the definition of the social cost of carbon �t, we have

�t = ���Pt

�Ct

= �t
��tYt��t�����!
Yt=Ct

⌧ t = ��tCt (78)

We have verified in Equation 78 that the social cost of carbon (SCC), derived from the social optimum model,
equals the optimal per-unit carbon tax, here �0t .

As long as we are considering only polluting non-renewable resources, we can see from (78) that the
optimal carbon tax �t is proportional to the good consumption Ct for � = 1, or it asymptotically becomes so
in the long run for � �= 1. 1,2

Hence a carbon tax as �t a↵ects the starting point and the transition of all the control variables, but not the
long-run steady state of the economy. Resource taxation delays extraction and stretches the depletion of the
resource stock to the future. Comparing the baseline no-tax model with the taxation model, we can therefore
suppose that during the transition phase we will have

1Lucas Bretschger and Christos Karydas. “Optimum growth and carbon policies with lags in the climate system”. In:
Environmental and Resource Economics 70.4 (2018-08), pp. 781–806. issn: 0924-6460. doi: 10.1007/s10640-017-0153-4.

2Lucas Bretschger and Christos Karydas. “Economics of Climate Change: Introducing the Basic Climate Economic (BCE)
Model”. In: Environment and development economics 24.6 (2019-12), pp. 560–582. issn: 1355-770X. doi: 10.3929/ethz-b-
000394747.
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No-Tax Tax

Sbaseline < Stax

Dbaseline > Dtax

Pbaseline > Ptax

Ĉbaseline < Ĉtax

Moreover, it is also logical to think that the per-unit tax that should in theory postpone extraction has to
grow at a slower rate than the price of the non-renewable resource. In this way, the unit-price paid for the
resource by consumers increases less rapidly than the price received by producers (which will grow at the
market’s interest rate ⇢), encouraging them to postpone extraction.
This hypothesis is confirmed by looking at the results (79), (80) of the households optimization problem, as
reported by Bretschger and Karydas (2019)2:

Ĉt =
1

�
(rt � ⇢) (79)

p̂Rt = rt (80)

if we assume � = 1, the price received by producers pRt grows at a rate rt, while the optimal carbon tax �0t
grows at rt � ⇢, (i.e. with consumption).

We can finally conclude the models comparison by stating that, given an economy in the social optimum,
the economy can still have positive growth with climate change. For the decentralized equilibrium, positive
growth is feasible provided that e�cient climate policies, such as carbon taxes, replicating the social optimum
are implemented.

Social Planner Decentralized Equilibrium

Less consumption A TAX is needed to increase the price of polluting activities
) Less pollution ) Decrease in the number of polluting activities

If there are no externalities, the results of the two models will coincide.

10
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Value
� 1.8
⇢ 0.015
↵ 0.9
�0 0.05
�1 0.04
�2 5⇥ 10�9

⌘ 2.35
P0 830 GtC
S0 6000 GtC
� 1
B 0.106

Table 1: Parameters values for the model

.4 Baseline model simulation

Here we will try to show graphically the outcome of the simulation for the BCE social optimum baseline
model. In particular, we will try to plot via MATLAB the trend with respect to time of the Resource stock
St, the Capital depreciation Dt and the Consumption growth rate Ĉt.

For the calibration of the BCE baseline model, we will use the parameters suggested by Bretschger and
Karydas (2019)3. Despite being 2010 the initial time (t = 0) considered in the previous study, we will choose
parameters on the damage function such that the growth rate of consumption starts at about 2 percent per
annum converging to about 0.5 percent per annum in the long run. The parameters values are reported in
Table 1.

As suggested in this study, we will assume that pollution feeds back in the economy through a sigmoidal
damage function D(Pt), according to:

D (Pt) = �0 + �1

✓
1� 1

1 + �2 (Pt � P0)
�

◆
(81)

For the consumption growth rate Ĉt, we make reference to the Keynes-Ramsey rule as expressed in Equation
53:

Ĉt =
↵B

�
� ↵D (Pt)

�
� ⇢

�
(82)

For the resource stock, we recall the basic Equations 3 and 7:

Ṡt = �Rt s.t.

Z 1

0

Rtdt  S0 and Ṗt = �Rt = ��Ṡt (83)

which combined lead to the model equation for the resource stock St:

Pt = P0 + � (S0 � St)
Rearranging��������! St = S0 +

1

�
(P0 � Pt) (84)

In order now to simulate the model, we will use the standard linearization technique via the jacobian
matrix. To do this we can introduce the auxiliary variable  t, i.e. the relative shadow price of the resource
stock, such that:

 t ⌘
�St

�St � ��Pt

where 0 <  t < 1 (85)

Recalling Equation 28:

�̂Pt = Ḋ(Pt)Kt
�Kt

�Pt

+ ⇢ (86)

3Bretschger and Karydas, “Economics of Climate Change: Introducing the Basic Climate Economic (BCE) Model”.
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We can rewrite Equation 17 using Equation 26, 28 and 85 in order to get

 ̂t = (1�  t)
↵Ḋ (Pt)

B✏t�̃t
(87)

as well as
Recalling��������������!

Equations 47 and 75

R̂t = �B✏t + ✏̂t � (1�  t)
↵Ḋ (Pt)

B✏t�̃t
(88)

We now define the resource depletion rate ut as

ut =
Rt

St
(89)

which allows us to rewrite Equation 3 and 7 as

P̂t = �ut
St

Pt
and Ŝt = �ut (90)

If we recall Equations 37, 47, 75, 87, 89, 90, and express them in terms of ut, ✏t, t, �̃t, Pt and St we are
finally able to represent the model dynamics by the following system of six variables.

u̇t = ut

 
�B✏t +

✏̇t

✏t
� (1�  t)

↵Ḋ (Pt)

B✏t�̃t
+ ut

!
(91)

✏̇t = ✏t

⇣
�⇢+B✏t � (� � 1) Ŷt

⌘
(92)

 ̇t =  t

 
(1�  t)

↵Ḋ (Pt)

B✏t�̃t

!
(93)

�̇�t = ��t

 
B✏t �

✏̇t

✏t
� ↵Ḋ (Pt)

B✏t�̃t

!
(94)

Ṗt = Pt

✓
�ut

St

Pt

◆
(95)

Ṡt = St (�ut) (96)

where

Ŷt = ↵

✓
✏̇t

✏t
+B (1� ✏t)�D (Pt)

◆
+ (1� ↵)

✓
u̇t

ut
� ut

◆
(97)

Recalling (54), (92) and (62), we write the long-run steady state values of variables ut, ✏t, t, �̃t, Pt and St:

u1 = B✏1 (98)

✏1 =
⇢+ ↵ (� � 1) (B �D (P1))

B�
(99)

 1 = 1 (100)

��1 =
↵Ḋ (P1)

(B✏1)2
(101)

P1 = P0 + �S0 (102)

S1 = 0 (103)

12
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The linearized version of our dynamic system in xt = {ut, ✏t, t, �̃t, Pt, St}T can be obtained by using the

jacobian matrix J evaluated at the steady states x� = {u1, ✏1, 1, �̃1, P1, S1}T according to the relation:

d (xt � x�)

dt
⇡ J (xt � x�) (104)

If we compute the jacobian matrix for the steady states we obtain the eigenvalues:

(105)
������������

0 0 0 0 0 0
0 �⇠ 0 0 0 0
0 0 �⇠ 0 0 0
0 0 0 ⇠ 0 0
0 0 0 0 ⇠ 0
0 0 0 0 0 ⇠

������������

where

⇠ =
⇢+ ↵ (� � 1) (B � ⌘D (P1))

�
(106)

We can now exploit the approximated relation expressed in Equation 104 and the jacobian matrix 105 to
derive the model equation for the resource stock St:

d (St � S1)

dt
⇡ JStSt (St � S1)

Eqn.103������!
JStSt=��

d (St)

dt
⇡ �⇠St (107)

Ṡt ⇡ �⇠St (108)

Equation 108 can be solved both analytically and numerically. Here we propose the analytical approach first:

Solving the ODE������������! St ⇡ C1e
��t

we know that S(t = 0) = S0 ) C1 = S0 (109)

therefore

St ⇡ S0e
��t ! St ⇡ S0e

�
⇢+ ↵ (� � 1) (B � ⌘D (P1))

�
t
; (110)

St ⇡ S0e
�

⇢+ ↵ (� � 1)

✓
B � ⌘

✓
�0 + �1

✓
1� 1

1 + �2 ((P0 + �So)� P0)
�

◆◆◆

�
t

(111)

We have found the expression for the time evolution of the resource stock St, which will be a function of time
exclusively, since all the parameters in Equation 111 are known.

However, we will plot the time-trends of the Resource stock St, the Capital depreciation Dt and the
Consumption growth rate Ĉt numerically using MATLAB.
In order to solve numerically the equation 108, we will use the Runge-Kutta method for numerical di↵erentia-
tion. We will assume a time period of interest of 200 years. Hereunder follows the MATLAB script for the
numerical analysis.

13
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.5 MATLAB Code

clc; clear all; close all;
%% PARAMETERS SETUP %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Parameters values from Table 1

sigma = 1;
rho = 0.015;
alpha = 0.9;
delta_0 = 0.05;
delta_1 = 0.04;
delta_2 = 5*10^(-9);
eta = 2.35;
P_0 = 830;
S_0 = 6000;
phi = 1;
B = 0.106;

P_t=0; S_t=0; %Random initial values
% Sigmoidal damage function D[t]
D=delta_0+delta_1*(1-(1)/(1+delta_2*(P_t-P_0)^(eta)));
% Long-run steady state value for the stock Pollution P_t
P_inf=P_0+phi*S_0;

% We derived in Equation 108 the ODE for the stock resource S_t:
S_t_prime = -((rho+alpha*(sigma-1)*(B-eta*D))/(sigma))*S_t;

%% 4th-order RUNGE-KUTTA NUMERICAL DIFFERENTIATION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% We will solve the ODE relative to S_t using the Runge-Kutta 4th-order method.
% Here we assume for simplicity y=S_t

% Equation to solve: Y'=-((rho+alpha*(sigma-1)*(B-eta*D(P_inf)))/(sigma))*Y;
% Y(0)=S_0; t=[0,200];

fid=fopen('Runge-Kutta_increments.m','w'); % Write results on an external file

h=0.1; a=0; b=200; % h is the step size, t=[a,b] t-range
t = a:h:b; % Computes t-array
y = zeros(1,numel(t)); % Memory preallocation

P_t=P_inf;
y(1) = S_0; % initial condition; in MATLAB indices start at 1
Fyt = @(t,y) -((rho+alpha*(sigma-1)*(B-eta*D))/(sigma))*y; % The function is the

% expression after (t,y)

% Table title
fprintf(fid,'%7s %7s %7s %7s %7s %7s %7s \n','i','t(i)','k1','k2','k3', 'k4','y(i)');
for ii=1:1:numel(t)

k1 = Fyt(t(ii),y(ii));
k2 = Fyt(t(ii)+0.5*h,y(ii)+0.5*h*k1);
k3 = Fyt((t(ii)+0.5*h),(y(ii)+0.5*h*k2)); k4 = Fyt((t(ii)+h),(y(ii)+h*k3));
y(ii+1) = y(ii) + (h/6)*(k1+2*k2+2*k3+k4); % Main equation

14
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% Table data
fprintf(fid,'%7d %7.2f %7.3f %7.3f',ii, t(ii), k1, k2);
fprintf(fid,' %7.3f %7.3f %7.3f \n', k3, k4, y(ii));

end
y(numel(t))=[ ]; % Erase the last computation of y(n+1)

% Solution PLOT:
figure(1);
f1=plot(t,y,'DisplayName','S_t','MarkerSize',3,'Marker','o','LineStyle','none','Color',

[0 0 0]); hold all;
title('Time evolution of the Resource Stock S_t','FontSize',14);
ylabel('Resource stock S_t'); xlabel('Time [years]');
box('on'); set(gca,'XMinorTick','on','YMinorTick','on');

S_t=get(f1,'YData'); % YData extrapolation from 'figure 1'
fclose(fid);

%% Derivation and plot for the POLLUTION STOCK P_t %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% We recall Equation 84

P_t = P_0+phi*(S_0-S_t);

% Solution PLOT:
figure(2);
f2=plot(t,P_t,'DisplayName','P_t','MarkerSize',3,'Marker','o','LineStyle','none',

'Color',[0 0 0]); hold all;
title('Time evolution of the Pollution Stock P_t','FontSize',14);
ylabel('Pollution stock P_t'); xlabel('Time [years]');
box('on'); set(gca,'XMinorTick','on','YMinorTick','on');

P_t=get(f2,'YData'); % YData extrapolation from 'figure 2'

%% Derivation and plot for the sigmoid DAMAGE FUNCTION D(P_t) %%%%%%%%%%%%%%%%%%%%%%%
% We recall Equation 81

D_t=delta_0+delta_1*(1-(1)./(1+delta_2*(P_t-P_0).^(eta)));

% Solution PLOT:
figure(3);
f3=plot(t,D_t,'DisplayName','D_t)','MarkerSize',3,'Marker','o','LineStyle','none',

'Color',[0 0 0]); hold all;
title('Time evolution of the Capital Depreciation D(P_t)','FontSize',14);
ylabel('Damage Function D(P_t)'); xlabel('Time [years]');
box('on'); set(gca,'XMinorTick','on','YMinorTick','on');

D_t=get(f3,'YData'); % YData extrapolation from 'figure 3'

%% Derivation and plot for the CONSUMPTION GROWTH RATE C^_t %%%%%%%%%%%%%%%%%%%%%%%%%
% We recall Equation 82

C_t = (1/sigma )*(alpha*B-alpha.*D_t-rho);

% Solution PLOT:
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figure(4);
f4=plot(t,C_t,'DisplayName','C_t)','MarkerSize',3,'Marker','o','LineStyle','none',

'Color',[0 0 0]); hold all;
title('Time evolution of the Consumption Growth Rate C_t','FontSize',14);
ylabel('Consumption Growth Rate C_t'); xlabel('Time [years]');
box('on'); set(gca,'XMinorTick','on','YMinorTick','on');

C_t=get(f4,'YData'); % YData extrapolation from 'figure 4'

.6 Graphical results

Figure 1: Resource stock St (on the left) and Pollution stock Pt (on the right) as a function of time t.

Figure 2: Capital depreciation D (Pt) (on the left) and Consumption growth rate Ĉt (on the right) as a
function of time t.
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The role of population growth in global sustainable development

Population growth is often seen as a threat to sustainable development...is it true?

World population is currently growing at the highest rate ever attained in history. Thomas Malthus in
the late 18th century first introduced the “Malthusian trap”, suggesting that there is a limit to population
size and growth due to a finite natural resource base4. In a similar way, Paul Ehrlich (1994)5 also claimed
that “sustainable development cannot continue without limits to population growth”, referring to capital
accumulation and technical progress as the principal factors that could help overcome resource scarcity and
food shortages. However, the pessimistic Malthusian notion of future “misery and vice” may not be fully
appropriate. Despite the evident scarcity of energy resources, raw materials deposits and the atmospheric
capacity to absorb polluting emissions, the total use of natural resources and energies will ultimately have to
shrink in future centuries. The question therefore remains whether policy should actively limit population
growth, even in the name of sustainable development.

From a mechanistic point of view, if we look at the so-called “IPAT” formula, per capita use of natural
resources and limiting population are interchangeable. Given that a�uence (A) is measured by income
per capita (Y/P) and technology (T) is measured by resource use per income (R/Y), human impact on
nature I equals resource use R, since income Y and population P cancel in the IPAT equation. This result,
despite being always true, does not contribute to our understanding of the relation between population
and sustainability. Indeed, the IPAT formula is based on the assumption that population, a�uence, and
technology are independent of one other. In reality, these variables are highly interdependent in many ways:
we can have e↵ects such as John Hicks’ “induced” innovation and the so-called “demographic transition”6,
which deals with the impact of income and wealth on fertility. On average, wealthier countries tend to have
smaller families than less developed countries; this means that both public social security and the increasing
costs of child parenting are among the drivers of the transition.

The relationship between the impact of population growth and the capital accumulation is also a main
issue. In the traditional neoclassical view, population growth is not favorable for development. By taking into
account physical capital (i.e. machines and infrastructures) only, di↵erent stocks have to be shared among
a rising number of people. In other words, the use of the capital by one person a↵ects the use by another
person, consequently reducing the capital per workplace, together with labor productivity and growth. To be
realistic, however, basic parts of capital come also in the form of knowledge capital, which can be shared by
everybody, as well as by an increasing workforce. If new ideas arise, everyone can use them without harming
the knowledge of somebody else. If we consider knowledge capital, then population growth will not decrease
labor productivity. In addition, as suggested by D. Gale Johnson (2001)7, people specialized in the creation
of knowledge work in research institutes and universities, which are clearly labor-intensive. These institutions
can discover and promote substitutes, including clean goods and green technologies, which will reduce the
overall natural resource consumption. As Julian Simon wrote in 19818, population could be the “ultimate
solution” to resource scarcities and environmental problems, since people can innovate. More people generate
more ideas, making the education and the size of the labor force augment the intensity of knowledge creation
and consequently the economic growth rate.

However, it is now worth asking if these new elements are influential enough to change the general opinion
of population growth and resource scarcity. A possible answer can be found in the paper “Population Growth
and Natural Resource Scarcity: Long-Run Development under Seemingly Unfavorable Conditions”9, where
it was proofed under very restrictive assumptions (i.e. poor input substitution, increasing resource prices

4Thomas Robert Malthus. “An essay on the principle of population. 1798”. In: The Works of Thomas Robert Malthus,
London, Pickering & Chatto Publishers 1 (1986), pp. 1–139.

5Joseph H. Vogel. “The Population Explosion by Paul R. Ehrlich and Anne H. Ehrlich (Simon and Schuster, NewYork,
1990), pp. 320, $US18.95, ISBN 0-671-68984-3”. In: Prometheus 9.2 (1991), pp. 396–397. doi: 10.1080/08109029108631961.
eprint: https://doi.org/10.1080/08109029108631961. url: https://doi.org/10.1080/08109029108631961.

6John R Hicks. “TheTheoryofWages”. In: London: Macmiilan (1932).
7D Gale Johnson. “On population and resources: a comment”. In: Population and Development Review 27.4 (2001),

pp. 739–747.
8Simon JL. The Ultimate Resource. 1981.
9Lucas Bretschger. “Population Growth and Natural-Resource Scarcity: Long-Run Development under Seemingly Unfavorable

Conditions”. In: The Scandinavian Journal of Economics 115.3 (2013), pp. 722–755.
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and the decision of families to have children) that population growth is not only positive, but even needed
to ensure su�cient innovation. This is because it may help the economy during the transition phase by
increasing the chances of developing e�cient technologies. The above conclusion is also in conformity with
Esther Boserup’s research10 on poor agrarian societies, where it is claimed that “necessity is the mother of
invention”. As she said in the book “The Conditions of Agricultural Growth: The Economics of Agrarian
Change under Population Pressure”, only in times of pressure people find out ways to increase the productivity
by fundamentally innovating.

Moreover, in contrast to the idea that population size is a global concern, one can show that a growing
labor force can be compatible with the natural environment, provided that the increasing resource scarcity is
fully reflected in resource prices. To express the concept into the right perspective, the current per capita use
of global resources is comparatively low in countries with high population growth, while it is much higher in
rich countries. Instead of restricting population in developing countries, it could be proposed the population
size to be restricted in richer countries. In many cases, however, the so-called “population problem” is actually
a problem strongly related to the attitude of the individuals: to ensure sustainability, we need to constantly
reduce the use of natural resource and to provide su�ciently high technical change. A transition to a long-run
steady state with constant population, sustainable resource use, and positive consumption growth may be
reached via a demographic transition which relies on individual behavior.

Finally, instead of a population policy which may result counterproductive, encouraging innovation, raising
the prices of natural resources, and increasing living standards may induce the demographic transition and
simultaneously promote sustainable consumption. As long as we don’t have a shrinking population problem,
just like in Japan, raising resource prices together with facilitating labor reallocation from knowledge-extensive
to knowledge-intensive sectors, which can develop and exploit green technologies, are the best means to
support sustainable development. Indeed, as shown in the paper “Population Growth and Natural Resource
Scarcity”11 adjusting resource process via continuous small steps to a sustainable equilibrium will help the
economy. As soon as all the countries have achieved an average decent living standard, population growth is
expected to stop.

10David Grigg. “Ester Boserup’s theory of agrarian change: a critical review”. In: Progress in Geography 3.1 (1979),
pp. 64–84.

11Bretschger, “Population Growth and Natural-Resource Scarcity: Long-Run Development under Seemingly Unfavorable
Conditions”.
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